A NEW ZONAL METHOD OF ANALYZING AND
CALCULATING THE RADIATION OF HEAT

Yu., M. Ageev UDC 536.3

The principles of a new zonal method are shown by which various characteristics of heat
radiation can be determined, in an extension of the problem to systems with an absorbing
and dispersing medium,

The zonal methods proposed and developed in [1-8] are now in wide use for determining both local
and mean energy characteristics of heat radiation.

Important here is the extraction of optics-geometrical resolvent functions which are the same for
optics-geometrically similar systems, This problem has been explored rather thoroughly in the case of
gray bodies with a transparent medium, but in the case of gray bodies with an absorbing and dispersing
medium the problem is much more complicated [3].

In view of this, the author felt the need to develop a new zonal method of determining both local and
mean characteristics of heat radiation, The results of this effect are shown here, A solution has been ob-
tained to the general problem of heat radiation in a system of gray bodies with diffusive surfaces and an
isotropically absorbing and dispersing medium, where densities of the intrinsic radiation in one part of
the medium and the boundary surface are given while volume and surface densities of the resultant radia-~
tion are given in the other part, The following expressions have been obtained for local surface densities
of the incident radiation flux Ej(m) at point m on the boundary surface

E; (m) = \  (c0) Py (cqm) dF (c;) + (nc(ho)P (hgm) dV (o) (Ly*
Fa Vo
and for the volume density of the incident radiation flux n;(b)
0 0)= | Eoley) Pylcod) dF (co) + § . (he) P, (ngb) dV (o). (2)
Fy Vo

The new elementary generalizations of the resolvent, which appear in Eq. (1) and (2), are defined
in terms of infinite convergent series or solutions to systems of integral equations of two kinds: the equa-
tions of one kind are

Py (egm) = Ko (e -+ \ R () Ky (et) Py egm) dF (c1>+5 B (hy) Ky (ob) Py (ngm) dV (ny); (3)
P, mm):Kz(hom)Tﬁ{ (e2) K, (002 Py (e dF(c1>+§ B (hy) Ko (hghy) Py (hym) dV (y); (4)
Py () =K, <c0b)+V R () Ky (cts) Py (e10) dF (o) + _gﬁm Ky (Coby) Py (0:8) dV (ny); (5)
Py (09) = K, (ned) -+ Y R (e) K, (nyey) By (e1b) dF (e) + { B (hy) Ky (nghy) Py (0yB) dV (). (6)

* A somewhat different equation analogous to (1) has been obtained by A, S. Nevskii [5, p. 71}].
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The radiation-geometrical functions in these equations are defined by the following expressions:

7{m
K, (cym) = cosf, cos B [mr2 exp hy]?, By = 5' k(r) dr; (7
r{es}
rm
K, (nym) = cos Bm[nrﬁomexp hy] ™, hy= s k(r) dr; (8)
r(hy
r(by
Ky (cob) = cos O, [aur? exp by 2, hy= j k(r) dr; (9
Fla)
r(.b)
K, (hyb) = [urﬁnbexp h)™ hy,= s k() dr. (10)

rhy
We will divide the system into surface and volume zones so that the following conditions are satisfied
at points within these zones:

a) radiation-geometrical conditions

Ky (Fic)) = Ky (Fil_:j) — L Ky (FiF)= L S‘ K (Fic;) dF (cy), (11)
F, F,
]
K (V) = K, (V.F)= ~—K,(V,F,;) = - L E K, (V) dF (c;), (12)
F, F,
!
Ky(Fi) = Ky (P T = <K (0D =~ { Ky(F ) dVi(t), (13)
N * .VLC
K, (V,h) = K, (V.V) = %fm VYo = —11,— K, (V. dV (b, (14)

where Ki(Fch) denotes the fraction of the flux radiating from surface zone Fj fo a unit area of elementfary
surface dF (cj) with the center at point cj, Ky (FiF; ) denotes the fraction of the flux radiating from surface
zone Fj to surface zone Fj, and Ky (FiF } denotes the fraction of the flux (mean) radiating from surface zone
F; to a unit area of surface zone Fj, the other functions in (11)-(14) having analogous physical meanings
referred to volume zones only,

b) optical conditions

~1~3( )= ! R,=const, i=1,2, ..., (m -+ w); (15)
) =B =const, x=1,2, ..., (my,+ w,);

¢) energy conditions
E,(c;) = E,, = const, 1, (h,) = ;]cx = const. (16)

For a more convenient further transformation of the integral equations defining the optics-geometri-
cal resolvents, we assume that their local, integral, and mean values are defined according to the follow-

ing expressions:

Py(Frey) = { Py(csey) dF (e5), Py(Vie) = jﬁz () dV (b,),
Fy (17
By (F;hy) ( By(eb )dF (), Py (Vo) = gP(ﬂh)dV(h),
Py(F =5 By(Fie) dF (c), Py(V.F) = [ Py(Vie)) dF (c)),
ki F; (18)
By(F V)= | By(Fyi) dV (b, Po(V.V.) = | PuVib)aV (ny),
V Vx
By (FiF)= ——B,(F,F), Py (VF) = — Py (V.F),
F: Fy (19)
pa (FJ Vx) = 11/ 133 (FJVx)’ i)4 (Vz 173.) ;. P (V Vx)7

respectively.

1394



From the system of integral equations (3)-(6), moreover, we obtain the following resolvent systerh
of linear algebraic equations (20) and (21) for the new local and integral optics-geometrical resolvents
respectively:

. by Myt
Py(Fym) = Ky (Fum) -+ 3 RE(FF)PyFm) -+ N, BKo(FLV,) Py(V,mh,
j==1 j—l
PV =Ky Vom) & 3 R, (VF) Py (Fym) + ‘>‘ B KLV, 7,) By (V)
=1 = (20)
- mytw, By,
Py (Fyb) = K3 (Fyb) + ZRKle )P(Fb)+ 251 (Fy J)P(Vb)»
j=1 .
my-twe Moty _
Py(V.h) =K (Vh+ 3 RiK, VF}P(Fb) S B,K, (V.F,) Pu(v,b);
j=I1 y=1

mytw, mytws

PoFFY) = KEF) + 3 RE(FF) PuFF) + 3 BKs(E) Py (V,FD;

j=I y=I
- my-twy My~
P,{V,F)) =K, (V,F}) E RK(VF)P(FF)—L ‘} B,K, (V.V,) PL(V,F.);

= (21)

Py (FyV) =Ky (FV.) + z Ry (FAF )Py (FV.) + \‘ BuKa(FiVy) Pu(V,V);

j=1 _/—-l

my -+ ' mytw,

(V V=K,V + N R, (V.F)P (FiV,) + ¥ BK(VV) PV,

_1 y~—1
LLhk=412 ..., (m+tw) xyz=12 ..., (m+w,).

The equations which yield local, integral, and mean energy characteristics of heat radiation in such
a system are obtained in the following form:

mx+w1 mz+w2
/z__l
’n1+‘ﬂx - mz-l-wz (22)
k=1 2—4
n ml—,—zi)l nytw,
Q(F) = | Ei(c))dF(c) = > EgPy(FuF)+ Y ez Py (V.F1);
F; k:’ z-«! (23)
Q (V:x) j dV h ) - S‘ Eckp (FkV + 2 ncz V V’C)
Ve k.,.l z=]
E. F-:———— (F), 1:(V) = (Vo
1( z) Fi Ql( 1,) n]_( ) V:c Ql( ) (24)
L k=1,2,...,(m tw) x,y,2=12, ..., (my-+w,).

respectively.
The following closure equations (25), (26), and (27) apply respectively to the local, the integral, and
the mean new optics-geometrical resolvents:

ZA By (Fym) + 4 Bo, Py (V) =13

= = (25)
‘yA P, (F,b) —1—42:ocP Vo) = 4

k._.

ZAP (F.F) —1-42:ocP(VF)

=1 (26)

my MMy

¥4, P(FVx)-ga4§ocP VYV =4V,

241

k =
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ZAAP (F,F)) M\MP (V,F) =

2~I

1y Mz (27)
2 Akps(FhV:r) +4 ZOCZPI;(VZV;,C) =4,
k=1 z=]

The local generalized resolvents 51 (Fjm) and IT"Z (Vym) denote the fractions of radiant energy which
finally reach an elementary area dF(m) of the boundary surface from surface zone Fj and from volume
zone Vy respectively, after an infinite number of reflections and absorptions at all boundaries and of dis-
persions and absorptions inside the entire medium of the system,

The results shown here define the conditions under which a system can be divided into separate zones,
surface zones as well as volume zones, they also yield both local and mean characteristics of heat radiation
at arbitrary boundary and inner points of a system which contains an absorbing and isotropically dispersing
medium, The results may be used for determining the monochromatic energy characteristics of a system
with selective optical properties of surfaces and media, or for determining their integral and mean values
in gystems with gray media,

NOTATION

n c(b) is the volume density of the intrinsic radiation at point b (b€V);

v is the volume;

F is the surface;

E(m) is the surface density of the intrinsic radiation at point m (m ¢ F);

dF(c) is the elementary area on the boundary surface at point ¢ (c € F);

dv) is the elementary volume at point h (h € V);

Om is the angle between the normal to the boundary surface at point m and the direction of the
incident and departing radiation at that point;

Tem is the straight-line distance between points c : and m;

r{c), r(h) is the space coordinate along beam Tem and rcb or Thm and I'hb at points ¢ and h respectively;

h; is the optical length of beam path (i=1, 2, 3, 4);

my is the number of zones where densities of the intrinsic surface radiation are given and where
the generalized reflection factor R(c) = R{c) = 1—-A(c);

Wy is the number of zones where densities of the resultant surface radiation are given and where
the generalized reflection factor Riec) =1;

my is the number of zones where space densities of the 1ntr1ns1c volume radiation are given and
where the generalized dispersion factor for the medium 5(h) = gh);

Wy is the number of zones where space densities of the resultant volume radiation are given and
where the generalized dispersion factor ,B(h) =k) = g) + ah);

kh) is the decay factor;

a) is the absorption factor.
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